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Abstract The increase of intracellular free calcium concentration ([Ca21]i) and protein kinase C (PKC) activity are
two major early mitogenic signals to initiate proliferation of human peripheral T cells. Bacterial lipopolysaccharide (LPS)
is nonmitogenic in human T cells. However, in the presence of monocytes, LPS becomes mitogenic to proliferate T cells.
The aim of this study was to define the incompetency of LPS on two mitogenic signals in human peripheral T cells. T cells
were isolated from human peripheral blood. [Ca21]i and pHi were determined by loading the cells with the fluorescent
dyes, Fura-2 acetoxymethyl ester (Fura-2/AM) and 28,78-bis(2-carboxyethyl)-5-(and 6)carboxyfluorescein acetoxymethyl
ester (BCECF/AM). PKC activity was determined by protein kinase assay and cell proliferation was estimated from the
incorporation of [3H]-thymidine. The results indicated that (1) LPS (10 µg/ml) stimulated PKC activity significantly within
5 min, reached a plateau at 30 min, and maintained that level for at least 2 h; and (2) LPS stimulated cytoplasmic
alkalinization but did not affect the levels of [Ca21]i and [3H]-thymidine incorporation into T cells. Moreover, the
combination of calcium ionophore A23187 with LPS significantly stimulated [3H]-thymidine incorporation into T cells.
Thus, the results demonstrate that LPS failed to proliferate T cells, probably because of a lack of the machinery necessary
to stimulate the mitogenic signal on [Ca21]i elevation. J. Cell. Biochem. 76:404–410, 2000. r 2000 Wiley-Liss, Inc.
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Bacterial lipopolysaccharide (LPS) derived
from Gram-negative microorganisms has be-
come a popular microbial activator in many
studies. LPS stimulates the proliferation and
antibody production in B cells [DeFranco et al.,
1987]. However, LPS is known to be nonmito-
genic on human T cells. Therefore, the effects of
LPS on human T cell are less well known. LPS
and its lipid A component are recognized as
potent inducers of both human T-cell prolifera-
tion and Th1-like lymphokines [Mattern et al.,
1994]. Meanwhile, the presence of viable mono-
cytes is required to proliferate T cells by LPS.

Recently, LPS-primed monocytes have been re-
ported to stimulate the proliferation of T cells
by costimulatory signals via CD28 [Mattern et
al., 1998]. This evidence suggests that the
stimulation of T-cell proliferation by LPS is
dependent on signals induced by direct cell-to-
cell contact between T cells and accessory mono-
cytes, whereas, until now, there have been few
reports investigating how LPS directly affects
the mitogenic signals in human peripheral T
cells.

Interleukin-2 (IL-2) receptor expression and
T-cell proliferation are inhibited by the protein
kinase C (PKC) inhibitor, H7 [Hengel et al.,
1991]. Blocking the increase of intracellular
Ca21 ([Ca21]i) by removal of extracellular cal-
cium with chelators or calcium channel block-
ers is associated with an inhibition of IL-2
secretion and T-cell proliferation [Mills et al.,
1985a,b; Gelfand et al., 1986]. Moreover, the
stimulation of T-cell proliferation can be mim-
icked by combined stimulation with ionophores
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to elevate [Ca21]i and phorbol ester to activate
PKC [Truneh et al., 1985; Clevers et al., 1985;
Koyasu et al., 1987]. Therefore, two major mito-
genic signals—sustained elevation in [Ca21]i

and PKC activity—are recognized to drive T
cells from differentiation toward proliferation
[Berry and Nishizuka, 1990; Weiss and Litt-
man, 1994]. The activity of Na1/H1 exchange is
enhanced by PKC [Mills et al., 1985c; Gelfand
et al., 1987; Ebanks et al., 1989]; this study
uses the rise in pHi (alkalinization) by enhanc-
ing the activity of Na1/H1 exchange as a physi-
ological response produced by PKC activation
in T cells.

In this study, responsiveness of T cells to
elevation of [Ca21]i, PKC activation, pHi, and
proliferation was evaluated by LPS. Mitogen,
phytohemagglutinin (PHA), and the co-mito-
gen, phorbol 12-myristate 13-acetate (PMA),
were used as controls of LPS. A 10-µg/ml dose of
LPS was chosen to stimulate the proliferation
and antibody production in B cells [DeFranco et
al., 1987], whereas the concentration of PMA at
100 pM has been used frequently to study the
signaling of T cells [Whelan et al., 1992]. We
found LPS to stimulate PKC activity and subse-
quent intracellular alkalinization but not the
elevation of [Ca21]i or proliferation of T cells.

MATERIALS AND METHODS
Chemicals

Fura-2/AM, BCECF/AM, nigericin, and val-
inomycin were purchased from Molecular
Probes (Eugene, OR). PHA, RPMI 1640 me-
dium (RPMI), Hank’s balanced salt solution
(HBSS), and fetal calf serum (FCS) were ob-
tained from Gibco (Grand Island, NY), whereas
LPS from Escherichia coli, PMA, A23187, bo-
vine serum albumin (BSA), and ficoll/hypaque
were obtained from Sigma Chemical Co. (St.
Louis, MO). P-81 phosphocellulose paper was
supplied by Whatman (Maidstone, UK), myelin
basic protein (MBP4-14) was purchased from
Research Biochemicals International (Natick,
MA), and [3H]-thymidine from New England
Nuclear (Boston, MA).

Separation of T Cells

Heparinized peripheral blood samples were
obtained from male volunteers. The blood mono-
nuclear cells (MNCs) were isolated by the Ficoll-
Hypaque gradient-density method. A total of
15 ml of MNC suspension was put into a

100 3 15-mm plastic Petri dish and incubated
in a humidified, 37°C, 5% CO2 incubator for 50
min. The adherent cells were harvested by a
rubber policeman and washed. The whole pro-
cess was repeated three times. The nonadher-
ent cells were separated by E-rosettes tech-
nique and flow cytometry (Coulter EPICS C,
Hialeah, FL). The T cells forming E-rosettes
were pelleted on the bottom and separated with
cold distilled water. To verify the effectiveness
of the separation procedure, T cells were incu-
bated for 30 min at 4°C with phycoerythrin-
labeled monoclonal antibodies to CD3 (Ortho
Pharmaceuticals, Raritan, NJ). T cells bound to
monoclonal antibodies were sorted with a fluo-
rescence-activated cell sorter (Coulter EPICS
C). Using this sorting technique, the T-cell sus-
pension was almost 100% CD3-positive cells
[Lin and Lo, 1991].

Measurement of [Ca21]i

T cells (2 3 107 cells/ml) were loaded with
Fura-2/AM (5 µM) in medium RPMI 1640 with
10% FCS (v/v) for 30 min at 25°C, washed free
of extracellular Fura-2/AM with RPMI 1640
three times, and resuspended (4 3 108 cells/ml)
in RPMI 1640 with 10% FCS. To determine
[Ca21]i, portions of cell suspension (2 3 106 cells)
were washed twice, resuspended in 2.5 ml of
loading buffer (152 mM NaCl, 1.2 mM MgCl2,
2.2 mM CaCl2, 5 mM KCl, 10 mM glucose, 10
mM HEPES, pH 7.4) and placed in a plastic
cuvette at 37°C in a dual-wavelength spectro-
fluorometer (Spex Industries, model CM1T11I,
Edison, NJ). Fluoresecence emission was mea-
sured at excitation wavelengths of 340 nm and
380 nm, with emission at 505 nm. [Ca21]i was
determined by monitoring the Fura-2 fluores-
cence-ratio signal. Intracellular Ca21 concentra-
tion was calculated by Spex DM3000 software
[Grynkiewicz et al., 1985].

Measurement of pHi

T-cell suspensions (2 3 107 cells/ml) were in-
cubated with BCECF/AM (3 µM) in HBSS and
supplemented with 5 mM glucose and 0.2%
BSA at 37°C for 30 min. Cells were then washed
three times with Na1 HBSS and resuspended
in HBSS supplemented with 5 mM glucose and
0.2% BSA. For pHi measurements, portions of
cell suspension (1 3 106 cells) were washed
twice with Na1 HBSS, resuspended in 2.5 ml of
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the same solution, transferred to a plastic cu-
vette at 37°C, and allowed to stabilize for 15
min before stimulation. BCECF fluorescence
was measured with the spectrofluorometer and
calculated from the ratio of emission at 525 nm
for excitations at 435 nm and 500 nm. A mix-
ture of 1 3 106 cells and 3 µM nigericin was
added to the solutions at pH values of 2–10.
Valinomycin (3 µM) was then added and al-
lowed to react for 5 min, and the fluorescence
signals were calibrated. The pH of K1 HBSS
was measured to the nearest 0.001 unit with a
pH meter (Radiometer Copenhagen, model
PHM 93). The calibration values were fitted as
a standard sigmoid curve from which pHi val-
ues were calculated.

Protein Kinase C Assay

Cells were washed twice with 200 µl buffer
solution (137 mM NaCl, 5.4 mM KCl, 0.3 mM
sodium phosphate, 0.4 mM potassium phos-
phate, 1 mM calcium chloride, 1 mg/ml glucose,
20 mM Hepes, pH 7.2, 30°C). To permeabilize
the cells and initiate the protein kinase assay,
the medium was replaced with 40 µl buffer
solution containing 50 µg/ml digitonin, 10 mM
MgCl2, 25 mM b-glycerophosphate, 100 µM
[g-32P]-ATP, and 300 µM myelin basic protein
fragment (MBP4-14). Kinase reactions were al-
lowed to proceed for 10 min at 30°C and then
terminated with 10 µl of 25% (w/v) trichloroace-
tic acid. Aliquots (45 µl) of the reaction mix-
tures were spotted on 2 3 2-cm strips of What-
man P-81 phosphocellulose paper and further
reactions were terminated by immersion of
strips into ice-cold 75 mM phosphoric acid. The
strips were then washed four times with 75 mM
phosphoric acid for 10 min and dried at 80°C.
Radioactivity in the phosphorylated protein was
measured by a liquid scintillation counter (Wal-
lac 1409, Pharmacia, Finland) and quantified
as described elsewhere [Roskoski, 1983]. The
protein content in T cells was determined by
Lowry’s assay [Lowry et al., 1951].

Proliferation Studies

T cells (2 3 106 cells/ml) were plated in tripli-
cate in a 96-well flat bottom plate (Corning,
NY) and stimulated separately with PHA, LPS,
or PMA. After 72 h, [3H]-thymidine, (spec act 1
µCi/mM, New England Nuclear, Boston, MA)
was added to the wells, incubated for 18 h, and
harvested with a multiwell cell harvester (Dy-
natech, Automash 2000, Billing Shourst, UK).

Radioactivity incorporated into DNA was mea-
sured by a liquid scintillation counter (Wallac
1409).

Statistical Analysis

Data concerning [Ca21]i and pHi were ana-
lyzed by Student’s paired t-test, with the signifi-
cance level at P , 0.05. Data concerning PKC
activity and proliferation were analyzed by Stu-
dent’s unpaired t-test. The values were ex-
pressed as mean 6 standard error of the mean
(SEM).

RESULTS
Effect of LPS on Protein Kinase C Activity and
Intracellular pH in Human Peripheral T Cells

The effects of LPS (10 µg/ml) on PKC activity
are shown in Figure 1. The stimulation of LPS
for 5–120 min resulted in a significant (P , 0.01)
increase in PKC activity in T cells. Administra-
tion of PHA (10 µg/ml) or PMA (100 pM) for
5–120 min also significantly increased PKC
activity as compared with unstimulated cells.
The time required for PKC peak activity was 15
min by PMA and 30 min by LPS or PHA. The
activity of PKC was elevated and maintained at
a plateau for at least 2 h after stimulation with
LPS, PHA, or PMA (Fig. 1). The effects of LPS
(10 µg/ml) on pHi are shown in Figure 2. The
intracellular pH began to rise 5 min after admin-
istration of LPS into T cells, whereas no effects
were observed in medium control (Fig. 2). At
the end of 30-min measurement, pHi had
changed from the basal level of 7.231 6 0.078
(n 5 19) to 7.356 6 0.016 (n 5 6, P , 0.01) with
LPS; to 7.371 6 0.034 (n 5 7, P , 0.01) with
PHA, and to 7.388 6 0.031 (n 5 6, P , 0.01)
with PMA.

Effects of LPS on Intracellular Ca21 Changes

T cells had been used to demonstrate the
dose-response relationship between [Ca21]i el-
evation and stimulation caused by PHA before
the experiments (Fig. 3).Administration of PHA
(10 µg/ml) resulted in an increase in [Ca21]i

starting within 1 min from the resting level of
98.2 6 12.2 nM. [Ca21]i reached a plateau of
168.4 6 21.9 nM (n 5 15, P , 0.05) at 3 min,
continuing at $10 min (Fig. 3). However, stimu-
lation of cells with LPS (10 µg/ml) or PMA (100
pM) did not produce detectable changes in
[Ca21]i (Fig. 4).
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Effects of LPS on T-Cell Proliferation

As shown in Figure 5, different concentra-
tions of PHA (0.1, 1, and 10 µg/ml) led to a
significant (P , 0.01) increased in the degree of
proliferation by [3H]-thymidine incorporation
into T cells; By contrast, in the controls, LPS
(10 µg/ml) and co-mitogen PMA (100 pM) failed
to stimulate the uptake of [3H]-thymidine, hence
are unable to proliferate T cells. However, the
combination of the calcium ionophore, A23187
(0.05 µM), with LPS led to significant (P , 0.01)
stimulation in the uptake of [3H]-thymidine
into T cells after incubation with or without
LPS.

DISCUSSION

In the present study, we found that the activ-
ity of PKC in human peripheral T cells in-
creased and was maintained for at least 2 h
after stimulation by LPS (Fig. 1). The results of
activation of PKC by PHA and phorbol ester are
consistent with observations in permeabilized
T cells [Alexander et al., 1990]. Prolonged acti-
vation of PKC is required for T-cell proliferation
[Berry et al., 1990]. Activation of PKC by LPS
has been reported to increase nitric oxide syn-
thetase activity and to reduce contractility in
cardiac cells [McKenna et al., 1995]. It is well
known that the activation of PKC is required

Fig. 1. Time course of protein kinase C activities in T cells after stimulation with 10 µg/ml lipopolysaccharide (LPS)
(left), 100 pM phorbol myristate acetate (PMA) (center), and 10 µg/ml phytohemagglutinin (PHA) (right). The
phosphorylation of myelin basic protein fragment (MBP4–14) was assayed with cell-free extracts from each group of
stimulated cells. The activities of protein kinase C increased significantly (P , 0.01) immediately after administration
of LPS, PMA, or PHA. Each value represents mean 6 SEM, n 5 3.

Fig. 2. Effects of lipopolysaccharide (LPS), phorbol myristate acetate (PMA), or phytohemagglutinin (PHA) on
intracellular pH in human peripheral T cells. BCECF-loaded cells (1 3 106 cells/ml) were suspended in Na1 Hank’s
solution with 10 µg/ml LPS (left), 100 pM PMA (center), or 10 µg/ml PHA (right) against vehicles (medium for LPS and
PHA, and dimethylsulfoxide [DMSO] for PMA). Arrows indicate the addition of the ligands. Tracings are from one
representative of six similar experiments.
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not only for T-cell proliferation, but for IL-2
receptor expression as well [Hengel et al., 1991].

The increase in pHi in human peripheral T
cells by LPS and by the controls, PMA, and
PHA can be observed in Figure 2. Comparison
of the time course of PKC activation in Figure 1
and alkalinization in Figure 2 showed that alka-
linization begins after the activation of PKC in
T cells. These results further confirm that the
intracellular alkalinization in T cells can be
used as a downstream physiological indicator
for PKC activation. Thus, the present result of
alkalinization in T cells by LPS is a new find-
ing. Both the activation of amiloride-sensitive

Na1/H1 exchange and the increased levels of
pHi have been demonstrated after the activa-
tion of T-cell surface receptors on T cells by
lectin or antibodies [Mills et al., 1985c, 1986].
Two shifts in the intracellular alkalinization
have been observed in T cells after stimulation
with mitogens [Gerson et al., 1982]. The first
shift in pHi within minutes after addition of
mitogen or phorbol ester has been considered
early biochemical events in quiescent T cells or
thymocytes [Grinstein et al., 1985, 1988; Gukov-
skaya et al., 1990; Astashkin et al., 1993]. The
second shift coincides with enhancing thymi-
dine incorporation into T cells as late responses
in mitosis after the stimulation of mitogen [Ger-
son et al., 1982]. The production of diacylglyc-
erol (DAG) after hydrolysis of phosphatidylino-
sitol activates PKC, which in turn enhances the
activity of Na1/H1 exchange to increase the pHi

in T cells [Gelfand et al., 1987]. Although LPS is
nonmitogenic to T cells, the present findings
involving an increase of PKC activity and intra-
cellular alkalinization by LPS indicate that LPS
can induce T cells to generate some biochemical
signals. Whether the IL-2 receptor can be ex-
pressed by LPS needs further study.

The increase of [Ca21]i in T cells compared
with PHA controls is shown in Figure 3. How-
ever, in the same cell condition, there were no
detectable changes in [Ca21]i by either LPS or
PMA (Fig. 4). When T cells are activated by
T-cell receptor-specific monoclonal antibodies
[Clayton et al., 1992] or mitogenic lectin [Gel-
fand et al., 1984, 1988; Hess et al., 1993], the
early mitogenic signal of [Ca21]i elevation is
observed. Since [Ca21]i elevation is essential for
T-cell proliferation, and LPS failed to excite
[Ca21]i elevation (Fig. 4), showing the inability
of LPS to proliferate T cells (Fig. 5). The cal-
cium ionophore A23187, which was used to
elevate [Ca21]i, is reported not to stimulate
human T-cell proliferation [Chopra et al., 1987].
However, as shown in Figure 5, significant
stimulation of T-cell proliferation was observed
by the combination of A23187 with LPS. These
results suggest that LPS failed to proliferate T
cells because of its failure in stimulating [Ca21]i

elevation. In addition, LPS was also demon-
strated to be nonmitogenic in T cells. The fail-
ure of proliferating T cells by LPS also excludes
the possibility of the existence of viable B cells
or monocytes in isolated T cells because, in the
presence of B cells or monocytes, incorporation

Fig. 3. Dose-response curve of phytohemagglutinin (PHA)-
induced [Ca21]i changes in Fura-2-loaded human T cells. Cells
were stimulated with (A) 20 µg/ml PHA, (B) 10 µg/ml PHA, or
(C) 5 µg/ml PHA. Arrow indicates the time of addition of the
stimulants. Tracings are obtained from one representative of
more than 15 experiments.

Fig. 4. Effect of phytohemagglutinin (PHA), lipopolysaccha-
ride (LPS), and phorbol myristate acetate (PMA) on intracellular
calcium in T cells. Fura-2-loaded T cells (2 3 106 cells/ml) were
suspended in loading buffer at 37°C. The arrow indicates the
time of addition of the ligands. Tracings are obtained from one
representative of more than 15 experiments.
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of [3H]-thymidine might be increased [De-
Franco et al., 1987; Mattern et al., 1994].

Studies of LPS effects on B cells suggest that
Na1/H1 exchange can be stimulated by both
elevation of cytosolic calcium and activation of
PKC [Rosoff and Cantley, 1985]. However, in
the present study, elevation in [Ca21]i was not
shown to accompany PKC activation and alka-
linization in T cells by LPS. The failure of
elevation in [Ca21]i indicates that the origin of
DAG in activation of PKC by LPS is probably
not attributable to the hydrolysis of phosphati-
dylinositol. Therefore, the Na1/H1 exchange
could be activated independently from changes
of [Ca21]i after stimulation of T cells by LPS.
Also, the prevention of cytoplasmic alkaliniza-
tion is not due to an inhibition of the increase of
[Ca21]i in T cells [Mills et al., 1990].

In summary, the results demonstrate that
LPS directly increases PKC activation and sub-
sequent intracellular alkalinization in T cells.
However, by lacking the machinery to stimu-
late the mitogenic signal on [Ca21]i elevation,
LPS failed to stimulate the proliferation of T
cells. Whether the PKC activation by LPS is
clinically significant in T-cell activation (e.g.,
during Gram-negative sepsis or endotoxemia)
remains to be investigated.
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